Spatial interference triggered by gaze and arrows. The role of target background on spatial interference
- Rafael Román-Caballero 1
- Andrea Marotta 1
- Juan Lupiáñez 1
-
1
Universidad de Granada
info
ISSN: 1576-8597
Año de publicación: 2021
Volumen: 42
Número: 2
Páginas: 192-209
Tipo: Artículo
Otras publicaciones en: Psicológica: Revista de metodología y psicología experimental
Resumen
Recent evidence with a spatial interference paradigm has shown that arrows and eye gaze yield opposite congruency effects, arrow target eliciting faster responses when their direction is congruent with their position (standard congruency effect), and gaze producing faster reaction times for incongruent conditions (reversed congruency effect). But in ecological contexts eye gaze tend to be more perceptually complex (i.e., embedded in the whole face) than simple arrows. The present study aimed to replicate this dissociation using whole faces and a comparable non-social target, formed by arrows embedded in a colored geometric background. Whereas the reversed congruency effect with gaze was replicated, the standard spatial interference with arrows was surprisingly absent. A similar outcome appeared when the contrast between the arrows and the task-irrelevant background increased. The results confirm the robustness of the reversed congruency effect with eyes, regardless of whether they are presented alone or within a face. In addition, and importantly, the unexpected absence of the spatial conflict with complex arrow targets seems to be a consequence of higher figure-ground segregation demands, which extend the processing of the task-relevant spatial dimension and, in turn, cause the decay of the location code. This pattern of results, and the provided interpretation, can explain previous unexplained findings in the spatial interference literature.
Referencias bibliográficas
- Birmingham, E., & Kingstone, A. (2009). Human social attention. Annals of the New York Academy of Sciences, 1156, 118–140. https://doi.org/10.1111/j.1749-6632.2009.04468.x
- Botella, J., Barriopedro, M. I., & Joula, J. F. (2002). Temporal interactions between target and distractor processing: Positive and negative priming effects. Psicológica, 23(2). http://www.redalyc.org/articulo.oa?id=16923207
- Brignani, D., Guzzon, D., Marzi, C. A., &Miniussi, C. (2009). Attentional orienting induced by arrows and eye-gaze compared with an endogenous cue. Neuropsychologia, 47(2), 370–381. https://doi.org/10.1016/j.neuropsychologia.2008.09.011
- Cañadas, E., & Lupiáñez, J. (2012). Spatial interference between gaze direction and gaze location: A study on the eye contact effect. Quarterly Journal of Experimental Psychology, 65(8), 1586–1598. https://doi.org/10.1080/17470218.2012.659190
- Chacón-Candia, J. A., Lupiáñez, J., Casagrande, M., & Marotta, A. (2020). Sex differences in attentional selection following gaze and arrow cues. Frontiers in Psychology, 11, 95. https://doi.org/10.3389/fpsyg.2020.00095
- Edwards, S. G., Seibert, N., & Bayliss, A. P. (2020). Joint attention facilitates observed gaze direction discrimination. Quarterly Journal of Experimental Psychology, 73(1) 80–90. https://doi.org/10.1177/1747021819867901
- Fan, J., Gu, X., Guise, K. G., Liu, X., Fossella, J., Wang, H., & Posner, M. I. (2009). Testing the behavioral interaction and integration of attentional networks. Brain and Cognition, 70(2), 209–220. https://doi.org/10.1016/j.bandc.2009.02.002
- Faul, F., Erdfelder, E., Buchner, A., & Lang, Georg, A. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavioral Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149
- Frischen, A., & Tipper, S. P. (2004). Orienting attention via observed gaze shift evokes longer term inhibitory effects: implications for social interactions, attention, and memory. Journal of Experimental Psychology: General, 133(4), 516–533. https://doi.org/10.1037/0096-3445.133.4.516
- Frischen, A., Bayliss, A. P., & Tipper, S. P. (2007). Gaze cueing of attention: Visual attention, social cognition, and individual differences. Psychological Bulletin, 133(4), 694–724. https://doi.org/10.1037/0033-2909.133.4.694
- Gibson, B. S., & Kingstone, A. (2006). Visual attention and the semantics of space: Beyond central and peripheral cues. Psychological Science, 17(7), 622–627. https://doi.org/10.1111/j.1467-9280.2006.01754.x
- Gregory, S. E., & Jackson, M. C. (2017). Joint attention enhances visual working memory. Journal of Experimental Psychology: Learning, Memory and Cognition, 43(2), 237–249. https://doi.org/10.1037/xlm0000294
- Hemmerich, K., Marotta, A., Narganes-Pineda, C., Martín-Arévalo, E., Jiménez, L., & Lupiáñez, J. (under review). Gaze elicits social and non-social attentional orienting: An interplay of shared and unique conflict of processing mechanisms.
- Hommel, B. (1993). The relationship between stimulus processing and response selection in the Simon task: Evidence for a temporal overlap. Psychological Research, 55(4), 280–290. https://doi.org/10.1007/BF00419688
- Jones, S. (2015). The mediating effects of facial expression on spatial interference between gaze direction and gaze location. The Journal of General Psychology,142(2), 106–117. https://doi.org/10.1080/00221309.2015.1009822
- Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. https://doi.org/10.3389/fpsyg.2013.00863
- Lawrence, M. (2018). Developing and validating a combined attention systems test (Doctoral dissertation). Dalhousie University.
- Lu, C. H., & Proctor, R. W. (1995). The influence of irrelevant location information on performance: A review of the Simon and spatial Stroop effects. Psychonomic Bulletin & Review, 2(2), 174–207. https://doi.org/10.3758/BF03210959
- Marotta, A., Lupiáñez, J., Martella, D., & Casagrande, M. (2012). Eye gaze versus arrows as spatial cues: Two qualitatively different modes of attentional selection. Journal of Experimental Psychology: Human Perception and Performance, 38(2), 326–335. https://doi.org/10.1037/a0023959
- Marotta, A., Lupiáñez, J., Román-Caballero, R., Narganes-Pineda, C., & Martín-Arévalo, E. (2019). Are eyes special? Electrophysiological and behavioural evidence for a dissociation between eye-gaze and arrows attentional mechanisms. Neuropsychologia, 129, 146–152. https://doi.org/10.1016/j.neuropsychologia.2019.03.017
- Marotta, A., Román-Caballero, R., &Lupiáñez, J. (2018). Arrows don’t look at you: Qualitatively different attentional mechanisms triggered by gaze and arrows. Psychonomic Bulletin & Review, 25(6), 2254–2259. https://doi.org/10.3758/s13423-018-1457-2
- Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorial in Quantitative Methods for Psychology, 4(2), 61–64. https://doi.org/10.20982/tqmp.04.2.p061
- Narganes-Pineda, C., Chica, A. B., Lupiáñez, J., & Marotta, A. (under review). Explicit vs. implicit spatial processing in arrow vs. eye-gaze spatial congruency effects.
- Posner, M. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25. https://doi.org/10.1080/00335558008248231
- Ristic, J., & Kingstone, A. (2012). A new form of human spatial attention: Automated symbolic orienting. Visual Cognition, 20(3), 244–264. https://doi.org/10.1080/13506285.2012.658101
- Román-Caballero, R., Marotta, A., & Lupiáñez, J. (under review). Target-background segregation in a spatial interference paradigm reveals shared and specific attentional mechanisms triggered by gaze and arrows.
- Tipples, J. (2002). Eye gaze is not unique: Automatic orienting in response to uninformative arrows. Psychonomic Bulletin & Review, 9(2), 314–318. https://doi.org/10.3758/BF03196287
- Torres-Marín, J., Carretero-Dios, H., Acosta, A., & Lupiáñez, J. (2017). Eye contact and fear of being laughed at in a gaze discrimination task. Frontiers in Psychology, 8, 1954. https://doi.org/10.3389/fpsyg.2017.01954
- Van der Lubbe, R. H., & Woestenburg, J. C. (1999). The influence of peripheral precues on the tendency to react towards a lateral relevant stimulus with multiple-item arrays. Biological Psychology, 51(1), 1–21. https://doi.org/10.1016/S0301-0511(99)00019-8
- Virzi, R. A., & Egeth, H. E. (1985). Toward a translational model of Stroop interference. Memory & Cognition, 13(4), 304-319. https://doi.org/10.3758/BF03202499