Docosahexaenoic Acid Protects against High Glucose-Induced Oxidative Stress in Human Retinal Pigment Epithelial Cells
- Arnal, Emma 2
- Johnsen-Soriano, Siv 2
- Lopez-Malo, Daniel 1
- Perez-Pastor, Gema 1
- Vidal-Gil, Lorena 1
- Morillas, Nuria 1
- Sancho-Pelluz, Javier 1
- Romero, Francisco 1
- Barcia, Jorge 1
- 1 Facultad de Medicina, Universidad Católica de Valencia, Valencia, Spain
- 2 Fundación Oftalmológica del Mediterráneo, Valencia, Spain
Datum der Publikation: 2016
Ausgabe: 2
Nummer: 4
Art: Artikel
Zusammenfassung
Diabetic retinopathy is a leading cause of vision loss and has been correlated with increased oxidative stress. The aim of the present study was to evaluate the protective properties of docosahexaenoic acid (DHA), an omega-3 fatty acid, in human retinal pigment epithelial (RPE) cells exposed to high glucose. Human RPE cell line (ARPE-19) was cultured for 4 days followed by 5 days of exposure to either a normal (5.5 mM) or a high (45 mM) D-glucose concentration in the absence and presence of DHA (100 µM). Reduced form of glutathione (GSH), total antioxidant capacity (TAC), total nitrites, and malodialdehyde (MDA) were assessed. 4-Hydroxynonenal (HNE), another lipid peroxidation product, was determined by immunocytochemistry. Cell viability was assessed by the MTT assay. The results showed that both TAC and GSH content were significantly decreased after the high glucose challenge. The presence of DHA prevented the reduction and maintained the TAC and GSH at the levels found in cells exposed to the normal glucose concentration (5.5 mM). Moreover, the levels of total nitrites and MDA were significantly increased after high glucose exposure compared to cell exposed to 5.5 mM glucose. Again, the presence of DHA prevented the increase and maintained the nitrites and MDA at the levels found in control cells. Notably, the high glucose condition led to a significantly increased number of HNE aggresomes as compared to control cells, and DHA completely prevented this increase. In line with the reduced oxidative stress, DHA treatment also completely prevented the high glucose-induced decrease in RPE cell viability. Taken together, this study demonstrated that DHA protected human retinal pigment epithelial ARPE-19 cells from high glucose-induced oxidative damage and cytotoxicity. The results of this study support a role for oxidative stress in high glucose-induced RPE injury and the potential use of omega-3 fatty acids to protect against diabetic retinopathy.
Informationen zur Finanzierung
This work was supported in part by funds from Fundación Oftalmológica del Mediterráneo (FOM), and from Universidad Católica de Valencia San Vicente Mártir. The authors would like to thank Leticia Gómez and Diana Martinez at FOM, Valencia, Spain, for their excellent technical assistance.Geldgeber
- Fundación Oftalmológica del Mediterráneo (FOM) Spain
- Universidad Católica de Valencia San Vicente Mártir. Spain
Bibliographische Referenzen
- 1. Liu Y, Xei F, Xu XF, Zeng H, He HQ, Zhang L, et al. Experimental study on apoptosis of TNFR1 receptor pro-endothelial progenitor cells activated by high glucose induced oxidative stress. Int J Clin Exp Med 2015; 8(11):19969–81.
- 2. Kumar P, Swain MM, Pal A. Hyperglycemia-induced inflammation caused down-regulation of 8-oxoG-DNA glycosylase levels in murine macrophages is mediated by oxidative-nitrosative stress-dependent pathways. Int J Biochem Cell Biol 2016; 73:82–98. doi: 10.1016/j.biocel.2016.02.006.
- 3. Jain SK, Kanikarla-Marie P, Warden C, Micinski D. L-cysteine supplementation upregulates glutathione (GSH) and vitamin D binding protein (VDBP) in hepatocytes cultured in high glucose and in vivo in liver, and increases blood levels of GSH, VDBP, and 25-hydroxy-vitamin D in Zucker diabetic fatty rats. Mol Nutr Food Res 2016. doi: 10.1002/mnfr.201500667.
- 4. Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016; 2016:3164734. doi: 10.1155/2016/3164734.
- 5. Behl T, Kotwani A. Exploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathy. Pharmacol Res 2015; 99:137–48. doi: 10.1016/j.phrs.2015.05.013.
- 6. Ahsan H. Diabetic retinopathy: biomolecules and multiple pathophysiology. Diabetes Metab Syndr 2015; 9(1):51–4. doi: 10.1016/j.dsx.2014.09.011.
- 7. Elahy M, Baindur-Hudson S, Cruzat VF, Newsholme P, Dass CR. Mechanisms of PEDF-mediated protection against reactive oxygen species damage in diabetic retinopathy and neuropathy. J Endocrinol 2014; 222(3):R129–39. doi: 10.1530/JOE-14-0065
- 8. Samuels IS, Bell BA, Pereira A, Saxon J, Peachey NS. Early retinal pigment epithelium dysfunction is concomitant with hyperglycemia in mouse models of type 1 and type 2 diabetes. J Neurophysiol 2015; 113(4):1085–99. doi: 10.1152/jn.00761.2014.
- 9. Chen YH, Chou HC, Lin ST, Chen YW, Lo YW, Chan HL. Effect of high glucose on secreted proteome in cultured retinal pigmented epithelium cells: its possible relevance to clinical diabetic retinopathy. J Proteomics 2012; 77:111–28. doi: 10.1016/j.jprot.2012.07.014. 10. Simon MV, Agnolazza DL, German OL, Garelli A, Politi LE, Agbaga MP, et al. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress. J Neurochem 2016; 136(5):931–46. doi: 10.1111/jnc.13487.
- 11. Teng E, Taylor K, Bilousova T, Weiland D, Pham T, Zuo X, et al. Dietary DHA supplementation in an APP/PS1 transgenic rat model of AD reduces behavioral and Abeta pathology and modulates Abeta oligomerization. Neurobiol Dis 2015; 82:552–60. doi: 10.1016/j.nbd.2015.09.002. 12. Fluckiger A, Dumont A, Derangere V, Rebe C, de Rosny C, Causse S, et al. Inhibition of colon cancer growth by docosahexaenoic acid involves autocrine production of TNFalpha. Oncogene 2016. doi: 10.1038/onc.2015.523.
- 13. Mansoori A, Sotoudeh G, Djalali M, Eshraghian MR, Keramatipour M, Nasli-Esfahani E, et al. Docosahexaenoic acid-rich fish oil supplementation improves body composition without influence of the PPARx03B3; Pro12Ala polymorphism in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. J Nutrigenet Nutrigenomics 2015; 8(4–6):195–204. doi: 10.1159/000442792.
- 14. Ellulu MS, Khaza'ai H, Patimah I, Rahmat A, Abed Y. Effect of long chain omega-3 polyunsaturated fatty acids on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. Food Nutr Res 2016; 60:29268. doi: 10.3402/fnr.v60.29268.
- 15. Tietze F. Disulfide reduction in rat liver. I. Evidence for the presence of nonspecific nucleotide-dependent disulfide reductase and GSH-disulfide transhydrogenase activities in the high-speed supernatant fraction. Arch Biochem Biophys 1970; 138(1):177–88. doi:10.1016/0003-9861(70)90297-3
- 16. Williams M, Hogg RE, Chakravarthy U. Antioxidants and diabetic retinopathy. Curr Diab Rep 2013; 13(4):481–7. doi: 10.1007/s11892-013-0384-x.
- 17. Ferrelli F, Pastore D, Capuani B, Lombardo MF, Blot-Chabaud M, Coppola A, et al. Serum glucocorticoid inducible kinase (SGK)-1 protects endothelial cells against oxidative stress and apoptosis induced by hyperglycaemia. Acta Diabetol 2015; 52(1):55–64. doi: 10.1007/s00592-014-0600-4.
- 18. Bonet-Ponce L, Saez-Atienzar S, da Casa C, Flores-Bellver M, Barcia JM, Sancho-Pelluz J, et al. On the mechanism underlying ethanol-induced mitochondrial dynamic disruption and autophagy response. Biochim Biophys Acta 2015; 1852(7):1400–9. doi: 10.1016/j.bbadis.2015.03.006.
- 19. Flores-Bellver M, Bonet-Ponce L, Barcia JM, Garcia-Verdugo JM, Martinez-Gil N, Saez-Atienzar S, et al. Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal. Cell Death Dis 2014; 5:e1328. doi: 10.1038/cddis.2014.288.
- 20. Bonet-Ponce L, Saez-Atienzar S, da Casa C, Sancho-Pelluz J, Barcia JM, Martinez-Gil N, et al. Rotenone induces the formation of 4-hydroxynonenal aggresomes: role of ROS-mediated tubulin hyperacetylation and autophagic flux disruption. Mol Neurobiol 2015. doi: 10.1007/s12035-015-9509-3.
- 21. Barcia JM, Flores-Bellver M, Muriach M, Sancho-Pelluz J, Lopez-Malo D, Urdaneta AC, et al. Matching diabetes and alcoholism: oxidative stress, inflammation, and neurogenesis are commonly involved. Mediators Inflamm 2015; 2015:624287. doi: 10.1155/2015/624287.
- 22. Frohnert BI, Long EK, Hahn WS, Bernlohr DA. Glutathionylated lipid aldehydes are products of adipocyte oxidative stress and activators of macrophage inflammation. Diabetes 2014; 63(1):89–100. doi: 10.2337/db13-0777.
- 23. Cohen G, Riahi Y, Sunda V, Deplano S, Chatgilialoglu C, Ferreri C, et al. Signaling properties of 4-hydroxyalkenals formed by lipid peroxidation in diabetes. Free Radic Biol Med 2013; 65:978–87. doi: 10.1016/j.freeradbiomed.2013.08.163.
- 24. Alvarez-Nolting R, Arnal E, Barcia JM, Miranda M, Romero FJ. Protection by DHA of early hippocampal changes in diabetes: possible role of CREB and NF-kappaB. Neurochem Res 2012; 37(1):105–15. doi: 10.1007/s11064-011-0588-x.
- 25. Arnal E, Miranda M, Johnsen-Soriano S, Alvarez-Nolting R, Diaz-Llopis M, Araiz J, et al. Beneficial effect of docosahexanoic acid and lutein on retinal structural, metabolic, and functional abnormalities in diabetic rats. Curr Eye Res 2009; 34(11):928–38. doi: 10.3109/02713680903205238.
- 26. SanGiovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 2005; 24(1):87–138. doi: 10.1016/j.preteyeres.2004.06.002.
- 27. Kanan Y, Gordon WC, Mukherjee PK, Bazan NG, Al-Ubaidi MR. Neuroprotectin D1 is synthesized in the cone photoreceptor cell line 661W and elicits protection against light-induced stress. Cell Mol Neurobiol 2015; 35(2):197–204. doi: 10.1007/s10571-014-0111-4.
- 28. Araki Y, Matsumiya M, Matsuura T, Oishi M, Kaibori M, Okumura T, et al. Peroxidation of n-3 polyunsaturated fatty acids inhibits the induction of iNOS gene expression in proinflammatory cytokine-stimulated hepatocytes. J Nutr Metab 2011; 2011:374542. doi: 10.1155/2011/374542.
- 29. Komatsu W, Ishihara K, Murata M, Saito H, Shinohara K. Docosahexaenoic acid suppresses nitric oxide production and inducible nitric oxide synthase expression in interferon-gamma plus lipopolysaccharide-stimulated murine macrophages by inhibiting the oxidative stress. Free Radic Biol Med 2003; 34(8):1006–16.
- 30. Lu CY, Penfield JG, Khair-el-Din TA, Sicher SC, Kielar ML, Vazquez MA, et al. Docosahexaenoic acid, a constituent of fetal and neonatal serum, inhibits nitric oxide production by murine macrophages stimulated by IFN gamma plus LPS, or by IFN gamma plus Listeria monocytogenes. J Reprod Immunol 1998; 38(1):31–53.
- 31. Wang S, Hannafon BN, Wolf RF, Zhou J, Avery JE, Wu J, et al. Characterization of docosahexaenoic acid (DHA)-induced heme oxygenase-1 (HO-1) expression in human cancer cells: the importance of enhanced BTB and CNC homology 1 (Bach1) degradation. J Nutr Biochem 2014; 25(5):515–25. doi: 10.1016/j.jnutbio.2013.12.011.
- 32. Nakagawa F, Morino K, Ugi S, Ishikado A, Kondo K, Sato D, et al. 4-Hydroxy hexenal derived from dietary n-3 polyunsaturated fatty acids induces anti-oxidative enzyme heme oxygenase-1 in multiple organs. Biochem Biophys Res Commun2014; 443(3):991–6. doi: 10.1016/j.bbrc.2013.12.085.
- 33. Zhang M, Wang S, Mao L, Leak RK, Shi Y, Zhang W, et al. Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J Neurosci 2014; 34(5):1903–15. doi: 10.1523/JNEUROSCI.4043-13.201